Motivational beliefs and perceptions of instructional quality: predicting satisfaction with online training*

A.R. Artino
Department of Educational Psychology, Neag School of Education, University of Connecticut, Storrs, USA

Abstract
Many would agree that learning on the Web – a highly autonomous learning environment – may be difficult for individuals who lack motivation and self-regulated learning skills. Using a social cognitive view of academic motivation and self-regulation, the objective of the present study was to investigate the relations between students’ motivational beliefs, their perceptions of the learning environment and their satisfaction with a self-paced, online course. Service academy undergraduates (n = 646) completed a questionnaire following online training. Pearson correlations indicate that task value, self-efficacy and perceived instructional quality were significantly positively related to each other and to students’ overall satisfaction with the self-paced, online course. Additionally, results from a three-step hierarchical regression reveal that task value, self-efficacy and instructional quality were significant positive predictors of students’ satisfaction; the final regression model accounted for approximately 54% of the variance in the outcome measure. These findings support and extend prior research in traditional classrooms and online education in university settings, indicating that military students’ motivational beliefs about a learning task and their perceptions of instructional quality are related, in important ways, to their overall satisfaction with online instruction. Educational implications and suggestions for future research are discussed.

Keywords
motivation, satisfaction, self-regulated learning, Web-based training.

In recent years, online learning has emerged as a viable alternative to conventional, face-to-face instruction (Bernard et al. 2004b; Larreamendy-Joerns & Leinhardt 2006; Tallent-Runnels et al. 2006). As a subset of a much larger form of instruction, distance education, online learning has become the format-of-choice for numerous institutions eager to provide students with the opportunity and convenience of learning from a distance (Simonson et al. 2003; Moore & Kearsley 2005). Due, in part, to recent advances in Internet-based technologies, what was once considered a poor substitute for traditional classroom instruction has finally entered mainstream education (Moore 2003; Moore & Kearsley 2005).

Evidence of the tremendous growth in online learning is not difficult to find. For example, the U.S. Department of Defense, an organization that spends more than US$17 billion annually on military training, recently committed to the development of the Advanced Distributed Learning (ADL) network. The ADL initiative is designed to capitalize on the capabilities of computer technology to make education and training available to*

*The author is a military service member. The views expressed in this article are those of the author and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, nor the U.S. Government.

Accepted: 13 August 07

Correspondence: Anthony R. Artino, Cognition and Instruction Program, Department of Educational Psychology, Neag School of Education, University of Connecticut, 249 Glenbrook Road, Unit 2064, Storrs, CT 06269, USA. Email: tony_artino@yahoo.com

doi: 10.1111/j.1365-2729.2007.00258.x

Journal of Computer Assisted Learning (2008), 24, 260–270
the military’s more than three million personnel anytime, anywhere – and online instruction is considered a critical component of the ADL network (Fletcher et al. 2007). Likewise, postsecondary institutions have recognized the utility of online learning. A recent survey of 2200 U.S. colleges and universities by The Sloan Consortium (2006) found that 96% of large institutions (greater than 15 000 total enrollments) have some online offerings; 62% of Chief Academic Officers rated learning outcomes in online education as the same or superior to traditional, face-to-face instruction; and overall online enrollment increased from 2.4 million in 2004 to 3.2 million in 2005.

Traditionally, research in the area of online learning, specifically, and distance education, more generally, has focused primarily on group comparisons (e.g. comparing the attitudes and academic performance of online/distance learners versus traditional classroom learners; Phipps & Merisotis 1999; Russell 1999; Berge & Mroczkowski 2001; Bernard et al. 2004b). With few exceptions, results from these studies have suggested that ‘the learning outcomes of students using technology at a distance are similar to the learning outcomes of students who participate in conventional classroom instruction’ (Phipps & Merisotis 1999, p. 1). In fact, this outcome has become so prevalent in the distance learning literature that Russell (1999) has dubbed it the no significant difference phenomena.

Recently, however, several experts in the field of distance education (e.g. Perraton 2000; Saba 2000; Dillon & Greene 2003; Gibson 2003; Bernard et al. 2004a,b; Abrami & Bernard 2006) have identified major deficiencies in the extant research on distance learning. In an attempt to rectify these deficiencies, the authors have challenged investigators to make two overarching changes to the conduct of distance education research: (1) move beyond group comparison studies and focus on within group differences among distance learners (i.e. those attributes – motivational, cognitive and otherwise – that contribute to success in distance learning environments); and (2) conduct investigations that are grounded in learning theory and which build on the work of others.

The present study represents the second phase of a research programme designed to address the recommendations outlined above. Specifically, using a social cognitive view of self-regulation as a theoretical framework (Bandura 1991; Zimmerman 2000), this study explores the relations between students’ motivational beliefs (task value and self-efficacy), their perceptions of the learning environment (perceived instructional quality), and their overall satisfaction with a self-paced, online course. Ultimately, the present investigation is designed to extend the robust literature on the importance of motivation and self-regulation in conventional classrooms, and the more limited research on motivation and self-regulation in online education, to self-paced, online learning in the context of an authentic military training environment.

Review of the literature

Online learning and student autonomy

The recent growth in online learning has resulted in a major shift in education and training from an instructor-centred to a learner-centred focus (Dillon & Greene 2003; Garrison 2003). Whereas teachers in traditional classrooms might normally provide guidance and structure for their students (e.g. additional direction for noticeably confused individuals and explicit feedback during classroom discussions), students learning online, and in the absence of an ever-present instructor, must take greater responsibility for the management and control of their own academic progress (Schunk & Zimmerman 1998; King et al. 2001; Dabbagh & Kitsantas 2004).

In light of these considerations, numerous researchers have argued that online students, to an even greater extent than traditional learners, require well-developed self-regulated learning (SRL) skills to guide their cognition and behaviour in these highly autonomous learning situations (Hill & Hannafin 1997; Hartley & Bendixen 2001; Dillon & Greene 2003; Dabbagh & Kitsantas 2004). For example, Dabbagh and Kitsantas (2004) have contended that ‘in a Web-based learning environment, students must exercise a high degree of self-regulatory competence to accomplish their learning goals, whereas in traditional face-to-face classroom settings, the instructor exercises significant control over the learning process and is able to monitor student attention and progress closely’ (p. 40).

SRL

Self-regulated learning – also referred to as academic self-regulation – has been defined as ‘an active,
constructive process whereby learners set goals for their learning and then attempt to monitor, regulate, and control their cognition, motivation, and behaviour, guided and constrained by their goals and the contextual features of the environment’ (Pintrich 2000, p. 453). Self-regulated learners are generally characterized as active participants who efficiently control their own learning experiences in many different ways, including establishing a productive work environment and using resources effectively; organizing and rehearsing information to be learned; and holding positive motivational beliefs about their capabilities and the value of learning (Schunk & Zimmerman 1994; 1998).

Interest in academic self-regulation has increased considerably in recent years as investigators and practitioners attempt to understand how students become masters of their own learning processes (Schunk & Zimmerman 1998; Dabbagh & Kitsantas 2004). Overall, the bulk of this research has focused on identifying the motivational, cognitive and behavioural characteristics of effective self-regulated learners, as well as trying to understand how these components relate to each other and to adaptive academic outcomes. Understanding these relationships is important because, as Pintrich and De Groot (1990) have argued, ‘knowledge of cognitive and metacognitive strategies is usually not enough to promote student achievement; students also must be motivated to use the strategies as well as regulate their cognition and effort’ (p. 33). In general, research in traditional classrooms has consistently found moderate to strong positive relations between students’ motivational engagement, their use of SRL strategies, and, ultimately, their academic achievement and overall satisfaction (Pintrich & De Groot 1990; Pintrich & Garcia 1991; Pintrich 1999). For example, in a survey study of 356 college undergraduates learning in traditional classrooms, Pintrich et al. (1993) found that adaptive motivational beliefs were positively correlated with students’ self-reported use of deep processing strategies and their final course grades.

Motivational influences on self-regulation and satisfaction in online education

Using primarily non-experimental, correlational methods, most studies of self-regulation in online education have mirrored the earlier research on self-regulation in traditional classrooms. On the whole, these investigations have attempted to discern if the relationships found in conventional classrooms generalize to online learning environments. For example, several researchers have investigated the importance of task value as a predictor of adaptive learning outcomes in online settings. Eccles and Wigfield (1995) have defined task value as the extent to which learners find a task interesting, important and/or valuable. In general, studies of online learners have revealed that task value beliefs positively predict students’ metacognition and use of learning strategies (Hsu 1997; Artino & Stephens 2006), academic performance and satisfaction (Lee 2002; Miltiadou & Savenye 2003); and future enrollment choices (Artino 2007). Beyond just a few studies, however, little is known about how students’ task value beliefs relate to other adaptive outcomes in online learning within both postsecondary education and military training environments.

Another commonly researched motivational construct in both traditional and online settings is students’ perceived self-efficacy; that is, students’ confidence in their ability to attain designated types of performances (Bandura 1997). According to Schunk (2005), ‘self-regulated learners are more self-efficacious for learning than are students with poorer self-regulatory skills; the former believe that they can use their self-regulatory skills to help them learn’ (p. 87). Overall, results from studies of online education have revealed that when compared with their counterparts with lower perceived self-efficacy, efficacious students report more use of learning strategies (Joo, Bong, & Choi 2000; Artino & Stephens 2006); increased satisfaction and greater likelihood of enrolling in future online courses (Lim 2001; Artino 2007); and superior academic performance (Hsu 1997; Joo et al. 2000; Lee 2002; Wang & Newlin 2002; Lynch & Dembo 2004; Bell & Akroyd 2006). Ultimately, however, there is a dearth of research on the importance of students’ self-efficacy in the context of self-paced, online training in the military.

Study objectives and research question

Findings from the online learning literature, although limited, seem to support research results from traditional classrooms indicating that students’ motivational beliefs about a learning task are positively related to adaptive academic outcomes. However, the bulk of the existing research in this area has been conducted in the
context of online education at civilian universities and not online training in military settings. And although education and training share many of the same psychological constructs (e.g. learning, transfer, memory and motivation), the two contexts are distinguished from one another by fundamental differences in their objectives, performance outcomes and the ultimate application of the underlying instruction (Bonk & Wisher 2000; United States General Accounting Office 2003).

Considering these fundamental differences, the present study seeks to determine if the relationships between SRL variables generalize to military students learning in a self-paced, online environment. Specifically, the following research question was addressed: after controlling for demographic and experiential variables, how accurately can a linear combination of task value, self-efficacy and perceived instructional quality predict military students’ overall satisfaction with a self-paced, online course? Satisfaction was chosen as the outcome of interest because several researchers have reported that student satisfaction with online learning is a powerful predictor of course dropout rate, as well as students’ intentions to enroll in future online courses (for a review, see Simonson et al. 2003; Dabbagh & Bannan-Ritland 2005; Moore & Kearsley 2005). Consistent with findings in traditional classrooms and online education in civilian universities, it was hypothesized that all three independent variables would be significant positive predictors of military students’ satisfaction with a self-paced, online course.

Method

Participants

A convenience sample of approximately 780 students from a U.S. service academy were invited to participate in the present study. A total of 646 students completed the survey (response rate = 83%). The sample included 514 men (80%) and 113 women (17%); 19 participants (3%) did not report gender. The mean age of the participants was 20.4 years (sd = 1.0; range 18–24). Information regarding ethnicity was not collected as part of this study.

Instructional materials

The instructional materials used in the present study consisted of a self-paced, online course developed by the U.S. Navy. The online course was the first part of a two-stage training programme in flight physiology and aviation survival training that was required for all service academy undergraduates (sophomores and juniors). Moreover, the online course was designed to be taken prior to students’ completion of the second stage of their training, which consisted of traditional, face-to-face instruction at a local training unit.

The online course was composed of four, 40-min lessons. Each lesson included text, graphics, video and interactive activities, as well as end-of-lesson quizzes that consisted of 12 to 15 multiple-choice and true/false, declarative knowledge-type questions. The entire course was designed as a mastery learning experience, and so students had to score ≥80% on each of the four end-of-lesson quizzes to successfully ‘pass’ the training. While working through the course, students who did not score ≥80% on any given quiz could return to the lesson, review the material and then retake the quiz. Quiz items were drawn from a pool of test questions, and thus each time an end-of-lesson quiz was attempted, the items were slightly different than the previous assessment. A student’s final grade in the course was computed as the average of the four end-of-lesson quizzes. Because of limitations imposed on the researcher by the U.S. Navy, students’ final grades could not be collected and analysed as part of the present study.

Procedures

Approximately one month after completing the online course, participants arrived at a local training unit for the face-to-face portion of their instruction. Prior to any classroom training, students were invited to complete an anonymous, self-report survey. Participation in the survey was completely voluntary.

Instrumentation

The instrument used in the present study was composed of 48 items divided into two sections. The first section included 36 Likert-type items with a response scale ranging from 1 (completely disagree) to 7 (completely agree). The items in this section were further subdivided into four subscales designed to assess students’ personal motivational beliefs (self-efficacy and task value), perceptions of instructional quality and overall
satisfaction with their online learning experience. All of the variables derived from this survey were created by computing means of the items associated with a particular subscale.

Personal motivational beliefs
Two subscales were developed to assess students’ personal motivational beliefs. The first was a 14-item *task value* subscale designed to assess students’ judgments of how interesting, useful and important the online course was to them. Subscale items were developed using expectancy-value theory as the guiding framework (see Eccles & Wigfield 1995). Sample items include: in the long run, I will be able to use what I learned in this course; I was very interested in the content of this course; and I liked the subject matter of this course. The second subscale was composed of seven items designed to assess students’ confidence in their ability to learn the material presented in the online course; that is, their *self-efficacy* for learning with self-paced, online courseware. Subscale items were developed using self-efficacy as the guiding framework (see Bandura 1997). Sample items include: even in the face of technical difficulties, I am certain I can learn the material presented in an online course; I can perform well in a self-paced, online course; and I am confident I can learn without the presence of an instructor to assist me.

Instructional quality
A seven-item *instructional quality* subscale was developed to assess students’ beliefs that the online course utilized effective instructional methods and design features. Sample items include: the instructional graphics helped me understand the material; the course was easy to navigate; and the end-of-module quizzes helped me learn the material.

Satisfaction
An eight-item *satisfaction* subscale was developed to assess students’ overall satisfaction with the self-paced, online course. Sample items include: I look forward to taking more online courses in the future; this online course met my needs as a learner; and overall, I was satisfied with my online learning experience.

The second part of the survey contained background and demographic items, including two individual items used as control variables in the present study:

1. **Online technologies experience.** Experience with online technologies was assessed with a single self-report item: in your estimation, how experienced are you using online computer technologies (for example, using a Web browser, surfing the Internet, etc.)? The response scale ranged from 1 (*extremely inexperienced*) to 7 (*extremely experienced*).
2. **Online learning experience.** Experience with self-paced, online learning was assessed with a single self-report item: in your estimation, how experienced are you with self-paced, online learning (for example, courses like the online portion of this course)? The response scale ranged from 1 (*extremely inexperienced*) to 7 (*extremely experienced*).

Results

Exploratory factor analysis
Prior to conducting any statistical analyses aimed at answering the primary research question, a principal axis factor analysis with oblique rotation (Oblimin; delta = 0) was completed on the 36 items that made up the four hypothesized subscales (see recommendations in Preacher & MacCallum 2003). Oblique rotation methods allow for factors to be correlated, and the assumption was made that the four factors thought to be present in the instrument were related (Netemeyer *et al.* 2003).

The number of factors to extract was determined on the basis of several criteria, including parallel analysis, examination of the resulting scree plot and eigenvalues greater than 1.0 (i.e. the K1 criterion; Hayton *et al.* 2004). Results from all three criteria suggested that five factors should be retained.

The five initial factors extracted accounted for 52.8% of the total variance in the items. Inspection of the table of communalities revealed that the majority of the items had high extracted communalities (i.e. >0.40), which indicates that much of the common variance in the items can be explained by the three extracted factors (Pett *et al.* 2003). Only three items had extracted communalities <0.40.

Several rules were used to determine the number of factors and individual items to be retained in the final solution: (1) factors needed to contain at least three items; (2) all factor pattern coefficients needed to be >0.50 on at least one factor; and (3) items with
factor pattern coefficients ≥ 0.30 on more than one factor were dropped (see recommendations in Pett et al. 2003). Using these guidelines, four factors were retained in the final solution: (1) a nine-item task value subscale ($\alpha = 0.89$); (2) a six-item self-efficacy subscale ($\alpha = 0.89$); (3) a seven-item instructional quality subscale ($\alpha = 0.87$); and (4) a six-item satisfaction subscale ($\alpha = 0.88$). The fifth factor contained four items with factor pattern coefficients ≥ 0.30 on more than one factor; therefore, this factor was dropped from the final solution. Internal reliability estimates (Cronbach’s alpha) for the four resulting subscales were quite good (see guidelines in Gable & Wolfe 1993).

Descriptive Statistics

Table 1 presents means and standard deviations for the variables used in the present study. Results indicate a mean slightly above the midpoint of the response scale and a standard deviation between 0.92 and 1.29 for each of the variables. Although the frequency distributions are not provided here, the distributions for the four subscales and two experiential control variables show some evidence of negative skew.

Pearson correlations

Table 1 also presents results from the correlation analysis. As expected, results indicate that task value, self-efficacy and perceived instructional quality were significantly positively related to each other and to students’ overall satisfaction with the online course. Additionally, the experiential control variables were significantly positively related to each other and to students’ self-reported task value, self-efficacy, instructional quality and overall satisfaction with the course. Gender and age were not significantly related to any of the variables measured in the present study. Overall, these results indicate that when considered individually, the predictor variables of task value, self-efficacy and perceived instruction quality explained from 22% to 42% of the variance in students’ satisfaction with the self-paced, online course; large effect sizes, in accordance with Cohen’s (1988) guidelines.

Regression analysis

A three-step hierarchical regression was conducted to explore further the relationships between task value, self-efficacy, perceived instructional quality and students’ overall satisfaction with the online course. For this analysis, the independent variables were grouped into three construct sets. In step 1, control variables [gender (male = 0; female = 1), age, online technologies experience and online learning experience] were added to the model, followed by motivational beliefs (task value and self-efficacy) in step 2 and perceived instructional quality in step 3. Steps 2 and 3 were entered in an order consistent with ecological models (Bronfenbrenner 1979); that is, based on their purported proximity to the learner.

Table 2 provides a summary of the hierarchical regression analysis. As indicated, after controlling for demographic and experiential variables, a linear combination of task value, self-efficacy and instructional quality significantly predicted students’ satisfaction.
with the course, $F_{7,611} = 103.77$, $P < 0.001$. Moreover, task value ($\beta = 0.31$, $P < 0.001$), self-efficacy ($\beta = 0.19$, $P < 0.001$) and instructional quality ($\beta = 0.40$, $P < 0.001$) were all significant positive predictors of students’ satisfaction. The final regression model with seven predictors (four control variables and three components of academic self-regulation) explained approximately 54% of the variance in students’ satisfaction; a large effect size, in accordance with Cohen’s (1988) guidelines.

Discussion

Findings from the present study support prior research indicating that students’ motivational beliefs about a learning task and their perceptions of instructional quality are related to positive academic outcomes. In particular, results are significant in that they take much of what has been confirmed in traditional classrooms and online education and provide some evidence that these relationships extend to self-paced, online learning in the context of an authentic military training course. Consistent with expectations, students’ self-reported task value, self-efficacy beliefs and perceptions of instructional quality were significant positive predictors of their overall satisfaction.

After accounting for the other variables in the final regression model, task value was a significant individual predictor of students’ overall satisfaction. It appears that students who believed the course was interesting, useful and important were more likely to be satisfied with the training. These findings parallel the work of Pintrich and De Groot (1990) who found that intrinsic value was strongly related to students’ positive attitudes, cognitive engagement and academic performance. Similarly, in a study of undergraduates enrolled in four different online courses, Lee (2002) found that task value was a significant positive predictor of students’ overall satisfaction.

Likewise, after controlling for the other variables in the final regression model, self-efficacy was a significant individual predictor of students’ overall satisfaction with the online training. These results are consistent with the findings of previous investigations of self-efficacy and its relations to adaptive outcomes, including students’ performance and satisfaction in traditional classrooms (Pintrich & De Groot 1990; Zimmerman & Martinez-Pons 1990; Zimmerman &

Table 2. Model summaries for the hierarchical regression analysis predicting overall satisfaction with the self-paced, online course.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Step 1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Step 1</td>
<td>Step 2</td>
<td>Step 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>SE</td>
<td>β</td>
<td>b</td>
<td>SE</td>
<td>β</td>
<td>b</td>
<td>SE</td>
<td>β</td>
<td>b</td>
<td>SE</td>
</tr>
<tr>
<td>Step 1: Demography and experience</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>0.14</td>
<td>0.13</td>
<td>0.04</td>
<td>0.01</td>
<td>0.10</td>
<td>0.00</td>
<td>0.03</td>
<td>0.09</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>-0.04</td>
<td>0.05</td>
<td>-0.03</td>
<td>-0.08</td>
<td>0.04</td>
<td>-0.07</td>
<td>-0.07</td>
<td>0.03</td>
<td>-0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Online technologies experience</td>
<td>0.10</td>
<td>0.05</td>
<td>0.09**</td>
<td>-0.05</td>
<td>0.04</td>
<td>-0.05</td>
<td>-0.05</td>
<td>0.04</td>
<td>-0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Online learning experience</td>
<td>0.20</td>
<td>0.04</td>
<td>0.21**</td>
<td>0.12</td>
<td>0.03</td>
<td>0.13**</td>
<td>0.11</td>
<td>0.03</td>
<td>0.11**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2: Motivational beliefs</td>
<td></td>
</tr>
<tr>
<td>Task value</td>
<td></td>
</tr>
<tr>
<td>Self-efficacy</td>
<td></td>
</tr>
<tr>
<td>Step 3: Instructional quality</td>
<td></td>
</tr>
<tr>
<td>Instructional quality</td>
<td></td>
</tr>
<tr>
<td>Model summary statistics</td>
<td></td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.062</td>
<td></td>
<td></td>
<td>0.434</td>
<td></td>
<td>0.538</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-value for model</td>
<td>11.256**</td>
<td></td>
<td></td>
<td>79.966**</td>
<td></td>
<td>103.769**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d.f. for model</td>
<td>4, 614</td>
<td></td>
<td></td>
<td>6, 612</td>
<td></td>
<td>7, 611</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2 change for step</td>
<td></td>
<td></td>
<td></td>
<td>0.371</td>
<td></td>
<td>0.104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-value for step</td>
<td></td>
<td></td>
<td></td>
<td>202.603**</td>
<td></td>
<td>138.664**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* $P < 0.05$, ** $P < 0.001$.

$b =$ unstandardized regression coefficient; $SE_b =$ standard error of b; $\beta =$ standardized regression coefficient.

Gender was dummy coded (male = 0; female = 1).
Bandura 1994). Moreover, these findings mirror the work of Artino (2007), indicating that the positive relationship between self-efficacy and satisfaction is equally robust for students learning in the context of self-paced, online training.

Finally, after accounting for the other variables, perceived instructional quality was the strongest individual predictor of overall satisfaction. It seems that students’ who felt the course utilized effective instructional methods were also more likely to be satisfied with their online learning experience. These findings are consistent with results that have been reported elsewhere in the online learning literature (for a review, see Simonson et al. 2003; Moore & Kearsley 2005). For example, in a study of 222 adult learners, Reinhart and Schneider (2001) found that perceptions of the distance learning environment were significantly related to students’ overall satisfaction.

Educational implications

Because of the correlational nature of this investigation, strong implications for online training are somewhat difficult to draw. Despite this limitation, results from the present study provide researchers, practitioners and policymakers with some important insights into the motivational characteristics of students who seem to be most satisfied with self-paced, online training. From a practical standpoint, institutions currently using, or planning to use, online training may be able to utilize this information to strengthen their students’ overall satisfaction with online course offerings. Clearly, however, more controlled studies that utilize experimental designs are needed to determine if instructional interventions aimed at bolstering students’ task value, self-efficacy and perceptions of instructional quality are capable of positively influencing students’ satisfaction and, ultimately, their academic performance in self-paced, online situations.

Study limitations and future directions

A significant limitation of the present investigation was the use of satisfaction as the sole outcome measure. Although several authors have lauded the importance of student satisfaction as a relevant outcome in online settings (see, for example, Chyung 2001; Simonson et al. 2003; Moore & Kearsley 2005), it is apparent that future work must include more direct, performance outcomes in order to truly understand how components of social cognitive self-regulation might positively influence student success with online training. This recommendation is particularly salient if one considers Moore and Kearsley’s (2005) warning that when analysing the results of student satisfaction surveys, ‘there is typically no relationship between these attitudes and actual achievement’ (p. 176).

Another limitation of this study was the application of a self-report instrument to measure the various constructs from social cognitive theory. Like any survey, the instrument used has reliability and validity limitations. In particular, social desirability bias and response sets are considered significant threats to the construct validity of any survey (Thorndike 2005). Future research that includes more direct, behavioural measures would help clarify how students’ motivational beliefs and attitudes impact their actual academic performance in self-paced, online courses.

Conclusions

Notwithstanding the limitations of the present study, results provide educators with some insight into the relationships between students’ motivational beliefs, their perceptions of instructional quality and their overall satisfaction with online training. Consistent with social cognitive models of self-regulation, findings support the view that students’ satisfaction with an online course can be explained, in part, by their motivational beliefs and attitudes towards the learning task. Future research should continue to explore these relationships and, furthermore, should investigate whether instructional interventions designed to positively impact students’ motivational beliefs and perceptions of course quality can also improve students’ satisfaction, cognitive engagement and overall academic performance in these highly independent, online training situations.

Notes

1Self-paced, online courses are a specific type of online training in which students use a Web browser to access a course management system and complete Web-based courses at their own pace. While completing these courses, students do not interact with an instructor or other students.
References

No claim to original U.S. government works. Journal compilation © 2007 Blackwell Publishing Ltd
Predicting satisfaction with online training

